• 本系概况
    • 学科简介
    • 发展历程
    • 筹建与发展委员会
    • 顾问委员会
    • 年度报告
    • 联系方式
  • 科研团队
    • 教师队伍
    • 杰出访问教授
    • 博士后
    • 博士生
    • 访问教授
  • 科学研究
    • 科研领域
    • 学术成果
    • 计算平台
  • 人才培养
    • 本科培养
      • 统计学专业本科
      • 统计学“101计划”
      • 统计学专业辅修
      • 数据思维与实践课程证书项目
    • 博士培养
    • 终身学习项目
  • 招生信息
    • 本科申请
    • 博士申请
    • 继续教育
      • 学分课《初等概率论》
      • 学分课《统计推断》
  • 新闻动态
    • 新闻动态
    • 最热新闻
    • 近期活动
    • 就业实习信息
    • 校友风采
  • 招聘信息
    • 教研系列招聘
    • 教学系列招聘
    • 博士后招聘
    • 行政团队招聘
  • 友情链接
    • 中国现场统计研究会计算统计分会
  • EN
首页 > 新闻动态 > 近期活动 > 正文

【统计学论坛】Weighting beyond Horvitz-Thompson in Causal Inference

近期活动
时间:2015年12月07日 16:00-17:00 报告人:李凡
时间 2015年12月07日 16:00-17:00 报告人 李凡

Time (时间): 4pm-5pm, 2015-12-07 (Monday)
Title (题目):: Weighting beyond Horvitz-Thompson in Causal Inference
Location (地点): 伟清楼209 (Center for Statistical Science, Tsinghua University)

Speaker (报告人): Fan Li, Associate Professor of Statistics, Duke University.

20151207090501_798

Abstract (摘要):
Covariate balance is crucial for an unconfounded descriptive or causal comparison. However, lack of balance is common in observational studies. This article considers weighting strategies for balancing covariates. We define a general class of weights—the balancing weights—that balance the weighted distributions of the covariates between treatment groups.  These weights incorporate the propensity score to weight each group to an analyst-selected target population.  This class unifies existing weighting methods, including commonly used weights such as the inverse-probability weights as special cases. General large-sample results on nonparametric estimation based on these weights are derived. We further propose a new weighting scheme, the overlap weights, in which each unit’s weight is proportional to the probability of that unit being assigned to the opposite group. The overlap weights are bounded, minimize the asymptotic variance of the weighted average treatment effect among the class of balancing weights. The overlap weights also possess a desirable small-sample exact balance property, based on which we propose a new method that achieves exact balance for any given target population. Two applications illustrate this method and compare it with other approaches. This is a joint work with Kari Lock Morgan and Alan Zaslavsky.

Bio
Fan Li is Associate Professor at Department of Statistical Science, Duke University. She got a BS in Mathematics from Peking University in 2001, and PhD in Biostatistics from Johns Hopkins University in 2006. Before joining Duke in 2008, she did a two-year postdoctoral fellowship at Harvard University Department of Health Care Policy.

Her main research interest in statistical methodology is causal inference, that is, designs and methods of analyses to evaluate treatments, interventions or actions in randomized experiments or observational studies, and their applications to social sciences, economics, health policy, psychology and epidemiology. She also have a strong interest in statistical methods for big and complex data, such as neuroimaging data, with an emphasis on developing advanced Bayesian inferential and computational methods. Her other interests include missing data, variable selection, small area estimation.

在这个信息爆炸的大数据时代,通过有效的数据分析,我们可以从大规模数据中,发现知识和规律,让数据成为推动社会进步的强大动力。

了解我们
微信公众号:清华大学统计与数据科学系
联系我们
联系地址

清华大学统计与数据科学系

北京市海淀区清华大学自强科技楼4号楼(吕大龙楼)715

联系电话

+86-10-62786091

邮箱

stats@tsinghua.edu.cn

快速导航
  • 本系概况
  • 人才培养
  • 招生信息
  • 新闻动态
  • 科学研究
  • 科研团队

版权所有 © 清华大学统计与数据科学系 京ICP备15006448号-1