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Abstract: Mediation, which means that an independent variable X affects a de-

pendent variable Y through a mediator M , is a key concept in causal inference.

For establishing mediation, there is a long debate on whether to require the “total

effect” of X on Y to be statistically significant. It has been shown that total-effect

test can erroneously reject “competitive mediation”. For “complementary media-

tion”, however, the situation becomes more complicated. This article provides an

explicit proof that the total effect is statistically significant whenever mediated ef-

fect and direct effect bear the same sign and are both significant, as long as the least

square estimation (LSE) and F -tests are used to estimate and test mediation effects.

We also show that the similar result can be obtained when the Sobel test is used.

Our results support the growing agreement that total-effect test is unnecessary for

establishing any type of mediation.

Key words and phrases: Bp, complementary mediation, hypothesis testing, linear

model, mediation analysis, percentage coefficient, percentage scale, total-effect test.

1. Introduction

The concept of mediation has been broadly used in many areas of social sci-

ences, which generally means that an independent variable X affects a dependent

variable Y through a mediator M . It plays an important role in understanding

causal mechanism, and is the focus of many research projects. The classic media-

tion model (Baron and Kenny (1986)) can be represented by the linear regression

below:

M = iM + aX + εM , (1.1)

Y = iY + bM + dX + εY , (1.2)

where the errors are assumed to follow independent normal distributions

εM ∼ N(0, σ2M ), εY ∼ N(0, σ2Y ).
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Figure 1. Mediation. Adapted from Baron and Kenny (1986), Figure 3.

There are two paths from X to Y : a direct path “X → Y | M” representing the

direct effect of X on Y while M is controlled (which equals to d), and an indirect

path “X →M → Y ” representing the mediated effect of X on Y via the mediator

M (which equals to a× b). Reorganizing (1.1) and (1.2), we obtain the following

linear model with X and Y only:

Y = i∗Y + cX + ε∗Y , (1.3)

where i∗Y = iY + biM , ε∗Y = εY + bεM , and c = a × b + d stands for the total

effect of X on Y combining the indirect effect a×b and the direct effect d. Based

on the relationship between the direct effect d and the mediated effect a × b,

mediation via the mediator M can be classified into three types according to

Zhao, Lynch and Chen (2010): the competitive mediation, which happens when

the direct and indirect paths bear opposite signs so that their effects offset each

other; the complementary mediation, which happens when the direct and indirect

paths bear the same sign so that their effects complement each other; and the

indirect-only mediation, which happens when the direct effect d = 0 while the

indirect effect a× b 6= 0.

It would be straightforward to establish mediation if the parameters are pre-

cisely known (e.g., mediation exists in the classic mediation model if a× b 6= 0).

The task becomes challenging in practice as typically only data instead of pa-

rameters are available. Baron and Kenny’s classic procedure (Baron and Kenny

(1986)) requires the simple correlation between X and Y to be significant, in

addition to the significance of the indirect effect a × b. MacKinnon, Warsi and

Dwyer (1995) demonstrated that the simple correlation is exactly the total effect

c = a×b+d under the classic model of mediation. Therefore, Baron and Kenny’s

classic procedure requires both the indirect-effect test for a×b and the total-effect

test for c to be significant. While many researchers (Judd and Kenny (1981);

Rose et al. (2004); Mathieu and Taylor (2006)) followed Baron and Kenny (1986)

to require the total-effect test for establishing any mediation, some (Collins, Gra-

ham and Flaherty (1998); Kenny, Kashy and Bolger (1998); Rose et al. (2000);
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MacKinnon, Krull and Lockwood (2000); MacKinnon et al. (2002); Shrout and

Bolger (2002)) recommended suspending the test for some types of mediation,

leading to a long debate among researchers, especially social scientists.

An obvious argument against the total-effect test regards competitive medi-

ation: when the direct and indirect paths bear opposite signs, their effects offset

each other, and hence the total effect can be non-significant even when the medi-

ated path is strong. The phenomenon is well-known, as shown in the long list of

publications on the topic (Conger (1974); Velicer (1978); McFatter (1979); Davis

(1985); Hamilton (1987); Cohen (1988); Tzelgov and Henik (1991); Kenny, Kashy

and Bolger (1998); MacKinnon, Krull and Lockwood (2000); Shrout and Bolger

(2002); Lord and Novick (2008); Hayes (2009); Zhao, Lynch and Chen (2010);

Rucker et al. (2011)). There are also simulated data (McFatter (1979); Collins,

Graham and Flaherty (1998); Hayes (2009)) and real-data examples (Zhao (1997);

Zhao, Lynch and Chen (2010); Li et al. (2013)) in support of the argument. A

second argument, offered by Shrout and Bolger (2002), is that when the inde-

pendent variable X occurs temporally long before the dependent variable Y , or

when the expected effect size is small, it would be too difficult for the medi-

ated effect to survive the total-effect test. The authors’ hypothetical example

was how out-of-home placement of children affects their substance abuse during

adulthood. A third argument, by Zhao, Chen and Tong (2011), is that in an

indirect-only mediation where the mediated a × b path is significant but the di-

rect d path is not, the large statistical error of d path relative to its effect size

may inflate the statistical error of the total effect c relative to its effect size. A

total-effect test in this situation may produce a misleading non-significant c when

mediation a× b is in effect strong. There is also a real data example (Zhao et al.

(1994)) in support of the argument. A fourth argument, which Zhao, Lynch and

Chen (2010) mentioned in passing, is that in a complementary mediation, where

the direct and indirect paths bear the same sign and both are significant, the

total-effect test always passes, making the test superfluous. Encouraged by these

arguments, more recent authors (Hayes (2009); MacKinnon and Fairchild (2009);

Zhao, Lynch and Chen (2010); Rucker et al. (2011); Zhao, Chen and Tong (2011))

advocated waiving the test for establishing any type of mediation.

While the experts seem to agree to suspend the total-effect test for compet-

itive mediation, there are less agreements on whether to require the test for the

other two types of mediation, especially complementary mediation. The detailed

debate can be found in Shrout and Bolger (2002), Rose et al. (2004), Wen et al.

(2004), Mathieu and Taylor (2006), and Wen and Ye (2014). Although various

arguments have been advanced for all sides, no explicit statistical formulation or
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solid mathematical proof for the original problem is available even for the classic

mediation model.

This article addresses this issue. By reformulating the issue into a geometric

problem about the rejection regions of the tests involved, we provide an explicit

proof that the total effect is statistically significant whenever mediated and direct

effects bear the same sign and are both significant, as long as the least square

estimation (LSE) and the F -test or the Sobel test (Sobel (1982)) are used to

estimate and test mediation effects. Considering that the LSE-F and LSE-Sobel

frameworks are the classic standard approaches for mediation analysis, our finding

provides support to the growing agreement that the total-effect test is unnecessary

for establishing any type of mediation.

2. Frameworks to Establish Complementary Mediation

In classic mediation model, treating the direct effect d and the mediation

effect a × b as unknown constants, we obtain the obvious equivalence between

“c = a × b + d = 0” and “a × b = 0 and d = 0” as long as a × b and d bear

the same sign. Furthermore, it seems intuitive that the same would hold for

statistical inference, i.e., if the two paths d and a× b bear the same sign and are

both significant, their combination c = a× b+d must point in the same direction

and also be statistically significant. If the intuition is correct, we would be able

to assure the significance of total effect c by testing the significance of a, b, and

d, and the total effect test would be redundant. To the best of our knowledge,

however, there is no explicit theoretical proof for this intuition, perhaps due to

the complexity of the statistical inference. The lack of theoretical guarantee has

contributed to confusions, disagreements, and continued debates on the role of

total effect test for establishing mediation.

There are different ways of estimating mediation. Baron and Kenny (1986)

suggested to estimate (a, b, d, c) by their LSEs (â, b̂, d̂, ĉ) and claim the indirect

path of mediation effect by the Sobel test, which tests

H0 : a× b = 0 vs H1 : a× b 6= 0 (2.1)

with statistic

S =
âb̂(

â2Var(b̂) + b̂2Var(â)
)1/2 ,

whose asymptotic distribution under the null is the standard normal. The LSE-

Sobel framework enjoys the advantage of straightforward intuition as it infers the

indirect mediation effect a× b directly with a single test. Its limitation lies in the
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fact that it is not an exact test as the distribution of the test statistic S depends

on the values of a and b.

Alternatively, Judd and Kenny (1981) suggested to establish mediation by

estimating and testing a, b, d, c separately, given that the original test in (2.1)

can be recast as an equivalent problem below:

H0 : a = 0 or b = 0 vs H1 : a 6= 0 and b 6= 0, (2.2)

which can be resolved by checking whether a 6= 0 and b 6= 0 separately via the

tests below:

H0 : a = 0 vs H1 : a 6= 0, (2.3)

H0 : b = 0 vs H1 : b 6= 0. (2.4)

If the null hypothesis is rejected for both (2.3) and (2.4), it appears that the null

hypothesis for test (2.2) should be rejected too. A natural way to implement

this idea is the LSE-F framework, in which a, b, d, c are estimated by LSE and

tested by the F -test. Because the F -tests for a, b, d, c are all exact, the LSE-F

framework enjoys the theoretical convenience that the LSE-Sobel framework does

not.

Moreover, to deal with cases where the noise terms εM and εY follow a

heavy-tail distribution, e.g., Laplace distribution, Pollard (1991) proposed the

LAD-Z framework, which follows a similar strategy as the LSE-F framework.

More precisely, in LAD-Z one estimates the regression coefficients by the more

robust least absolute deviation estimation (LAD) and tests their significance by

the Z-test: comparing the Z-statistic zj = |β̌j |/sd(β̌j) with the standard normal

distribution to establish the statistical significance, where β̌j is the LAD estimate

of regression coefficient β and sd(β̌j) is the estimated standard deviation of β̌j .

MacKinnon, Warsi and Dwyer (1995) provided a comprehensive review of the

different frameworks and compared their performance via simulations.

3. Main Results

3.1. The major theorem

This study focuses on LSE-F framework. Let â, (b̂, d̂), and ĉ be the LSEs of

the coefficients a, (b, d), and c in regression models (1.1), (1.2), and (1.3), respec-

tively. We use Ra(α), Rb(α), Rd(α) and Rc(α) to denote the rejection regions of

the corresponding F -tests under the critical level α ∈ (0, 1), and pa, pb, pd and

pc are the corresponding p-values. We note that the question of “whether the
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total-effect test is superfluous for establishing complementary mediation” can be

addressed by verifying whether Ra(α)∩Rb(α)∩Rd(α) ⊆ Rc(α) for all α ∈ (0, 1).

Apparently, if Ra(α)∩Rb(α)∩Rd(α) is always a subset of Rc(α), we would have

pc ≤ max{pa, pb, pd}, which in turn means that the total effect c must be signif-

icant if a, b and d are all significant. In this paper, we show via the following

theorem that the rejection regions indeed enjoy such as nice geometry under a

mild condition.

Theorem 1. Suppose there are n data points in the classic mediation model.

Let 1 = (1, . . . , 1)T be the n-dimensional column vector whose elements all equal

to 1, and let X,M,Y be the column data vectors for variables X, M and Y

respectively. Let D = (1,X,M,Y) denote the data matrix of the regression. If

rank(D) = 4, then the condition â× b̂× d̂ > 0 implies sign(ĉ) = sign(d̂) and

Ra(α) ∩Rb(α) ∩Rd(α) ⊆ Rc(α) for all α ∈ (0, 1).

To verify Theorem 1, we need to derive the concrete form of the involved

LSEs and rejection regions. For a multivariate linear regression problem

Y = β0X0 + β1X1 + · · ·+ βpXp + ε (3.1)

with n data points {(Xi0, Xi1, . . . , Xip, Yi)}ni=1, we let β̂ be the LSE of β =

(β0, . . . , βp), and let Rj(α) be the level-α rejection region of the F -test for testing

hypotheses

H0 : βj = 0 vs H1 : βj 6= 0. (3.2)

Let Y = (Y1, . . . , Yn)T and Xj = (X1j , . . . , Xnj)
T be the response vector and

the jth predictor vector, respectively. We write the design matrix as X =

(X0,X1, . . . ,Xp), and denote

X[−j] = (X0, . . . ,Xj−1,Xj+1, . . . ,Xp) for all j ∈ {0, . . . , p}.

The classic theory for linear regression (Neter, Wasserman and Kutner (1989))

tells us that

β̂ = (X′X)−1X′Y, (3.3)

Rj(α) =

{
(X,Y) :

||YX −YX[−j]||/1
||Y −YX||/(n− p− 1)

> λ1,n−p−1(α)

}
, (3.4)

where YX stands for the projection of vector Y onto the linear space, span(X),

and λt,s(α) represents the αth-quantile of F -distribution with the degrees of free-
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Table 1. Tests to establish mediation: models, hypotheses and rejection regions of the
F -tests for each parameter.

Test Model Hypotheses Rejection region of F -test

Ta M = iM + aX + εM H0 : a = 0, H1 : a 6= 0 Ra(α) =

{
||M1,X −M1||/(2− 1)

||M−M1,X||/(n− 2)
> λ1,n−2(α)

}
Tb Y = iY + bM + dX + εY H0 : b = 0, H1 : b 6= 0 Rb(α) =

{
||Y1,M,X −Y1,X||/(3− 2)

||Y −Y1,M,X||/(n− 3)
> λ1,n−3(α)

}
Td Y = iY + bM + dX + εY H0 : d = 0, H1 : d 6= 0 Rd(α) =

{
||Y1,M,X −Y1,M||/(3− 2)

||Y −Y1,M,X||/(n− 3)
> λ1,n−3(α)

}
Tc Y = i∗Y + cX + ε∗Y H0 : c = 0, H1 : c 6= 0 Rc(α) =

{
||Y1,X −Y1||/(2− 1)

||Y −Y1,X||/(n− 2)
> λ1,n−2(α)

}

dom (t, s). Applying (3.4) to the mediation model (1.1)-(1.3), we obtain the

rejection regions Ra(α), Rb(α), Rd(α), and Rc(α) for the corresponding F -tests,

as summarized in Table 1.

3.2. Simplifying the problem via orthogonal data transformation

Although (3.3)-(3.4) and Table 1 provide the mathematical formulation of

LSEs and rejection regions of interest, it is inconvenient to verify Theorem 1

directly based on them. To further simplify the problem, we note that the sta-

tistical inference of β in terms of LSE and F -tests does not depend on the choice

of the coordinate system in the data space of the regression model as stated by

the lemma below:

Lemma 1. Let D = (X0,X1, . . . ,Xp,Y) be the data matrix of regression model

(3.1). For any n×n real orthogonal matrix Γ satisfying Γ′Γ = In and global scale

parameter γ > 0, define D̃ = (X̃0, X̃1, . . . , X̃p, Ỹ) = γΓD be the transformed data

matrix and

Ỹ = β0X̃0 + β1X̃1 + · · ·+ βpX̃p + ε (3.5)

be the transformed regression problem. Let β̃ be the LSE of β and R̃j(α) be

the corresponding rejection region of F -test for hypotheses (3.2) under the trans-

formed problem (3.5). We have

β̃ = β̂ and R̃j(α) = Rj(α) for all j ∈ {0, . . . , p} and α ∈ (0, 1).

Lemma 1 means that we can choose a convenient coordinate system to work

with in a regression model without changing the results of statistical inference

for regression coefficient. Considering that data matrix D = (1,X,M,Y) in the

classic mediation model and rank(D) = 4, the four column vectors in D span a



8 JIANG ET AL.

4-dimensional subspace in Rn. With the freedom to reset the coordinate system

of Rn and the scale of the four data vectors, we can certainly find an orthogonal

coordinate system of the data space under which the vector representation of the

four original data vectors becomes 1̃ = (1, 0, . . . , 0)T , X̃ = (x1, x2, 0, . . . , 0), M̃ =

(m1,m2,m3, 0, . . . , 0), Ỹ = (y1, y2, y3, y4, 0, . . . , 0) with x2 > 0,m3 > 0 and y4 >

0. Let D̃ = (1̃, X̃, M̃, Ỹ) be the data matrix under the new coordinate system.

Clearly, D̃ is an upper triangular matrix.

Because different coordinate systems can be mapped to each other via orthog-

onal transformations, we can also interpret D̃ as a transformation of the original

data matrix D, i.e., there exists an orthogonal matrix Q such that D̃ = γQ′D,

where the factor γ = 1/
√
n rescales the vector 1 to have unit length. In theory,

the configuration of orthogonal matrix Q is typically not unique, as there are

often more than one coordinate systems that satisfy our conditions. In prac-

tice, however, we can always find a specific configuration of Q via the standard

Gram-Schmidt process. We detail the process in Supplementary Materials. Since

Lemma 1 ensures that D and D̃ lead to the exactly the same LSEs and rejec-

tion regions for (a, b, d, c), and projection calculation becomes much easier for the

transformed data matrix D̃, we can derive an explicit form of LSEs and geometric

shapes of rejection regions in Lemma 2.

Lemma 2. Based on the transformed data matrix D̃, we have:

â = ã =
m2

x2
, b̂ = b̃ =

y3
m3

, ĉ = c̃ =
y2
x2
, d̂ = d̃ =

(m3y2 −m2y3)

x2m3
;

Ra(α) = R̃a(α) = {r > rn,α} ,
Rb(α) = R̃b(α) = {p > pn,α} ,

Rc(α) = R̃c(α) =
{
q > rn,α(p2 + 1)1/2

}
,

Rd(α) = R̃d(α) =

{
{|q − rp| > pn,α(r2 + 1)1/2}, if âb̂ĉ ≥ 0,

{|q + rp| > pn,α(r2 + 1)1/2}, if âb̂ĉ < 0;

where r = |m2|/m3, p = |y3|/y4 and q = |y2|/y4; rn,α = [λ1,n−2(α)/(n−2)]1/2 and

pn,α = [λ1,n−3(α)/(n− 3)]1/2 are constants for fixed sample size n and significant

level α.

Lemma 2 indicates that each of the four rejection regions of interest corre-

sponds to a subspace in a 3-dimensional space indexed by (p, q, r), which degen-

erates to a region in p-q plane Pr for each specific value of r. Let Rj(α|r) be

the intersection of Rj(α) and Pr for all j ∈ {a, b, c, d}. Apparently, Ra(α|r) =

Pr
⋂
I(r > rn,α) corresponds to either an empty set or the whole p-q plane
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Figure 2. A graphical illustration of Rb(α|r),Rc(α|r) and Rd(α|r) in the p-q for a fixed

r: (A) Rb(α|r), (B) Rc(α|r), (C) Rd(α|r) when âb̂ĉ ≥ 0, (D) Rd(α|r) when âb̂ĉ < 0.

Pr depending on the value of r. Region Rb(α|r) is the right half of Pr be-

yond the vertical line p = pn,α. Region Rc(α|r) corresponds the space above

the higher branch of the hyperbola with asymptotes q = ± rn,αp and vertices

(0,± rn,α). The structure of region Rd(α|r) = R+
d (α|r) ∪ R−d (α|r), however,

is a bit complicated. When âb̂ĉ ≥ 0, Rd(α|r) contains two disconnected sub-

regions R+
d (α|r) and R−d (α|r), where R+

d (α|r) = {q > pn,α
√
r2 + 1 + rp} being

the region above the straight line with intercept tr,α = pn,α
√
r2 + 1 and slope

kr = r, and R−d (α|r) = {q < −pn,α
√
r2 + 1 + rp} being the region below the

straight line with intercept −tr,α and slope kr = r. When âb̂ĉ < 0, however,

the two components of Rd(α|r) change accordingly into the new forms below:

R+
d (α|r) = {q > pn,α

√
r2 + 1 − rp} and R−d (α|r) = {q < −pn,α

√
r2 + 1 − rp},

with R−d (α|r) vanishes due to the constraints that p > 0 and q > 0. Figure 2

provides a graphical demonstration for the geometry of Rb(α|r), Rc(α|r) and the

effective components of Rd(α|r) under different conditions, respectively.
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Figure 3. Geometry of Rb(α|r)
⋂
Rd(α|r) and Rc(α|r) in p-q plane for complementary

mediation.

3.3. Geometric analysis for complementary mediation

To claim complementary mediation, we require âb̂d̂ > 0 as a necessary con-

dition.

Corollary 1. If âb̂d̂ > 0, we have: (1) sign(ĉ) = sign(d̂), and (2) R−d (α) = ∅,
and thus Rd(α) = R+

d (α) =
{
q > rp+ pn,α(r2 + 1)1/2

}
.

Based on the above reasoning, for complementary mediation, the geometry

of Ra(α|r), Rb(α|r), Rd(α|r) and Rc(α|r) can be demonstrated as in Figure 3.

Obviously, Theorem 1 holds if and only if

Ra(α|r)∩Rb(α|r)∩Rd(α|r) ⊆ Rc(α|r) for all α ∈ (0, 1) and r ∈ (0,+∞). (3.6)

As (3.6) trivially holds for all r ≤ rn,α, we only need to consider the scenario

where r > rn,α. In this case, the geometry in Figure 3 shows that a sufficient and

necessary condition of (3.6) is: the boundary of Rb(α|r) ∩ Rd(α|r) stays away

from the boundary of Rc(α|r) for all α ∈ (0, 1), which is ensured by the condition:

for all n > 3 and α ∈ (0, 1),

πn,α = trn,α − rn,α = pn,α(r2n,α + 1)1/2 − rn,α ≥ 0. (3.7)

The Lemma below guarantees that inequality (3.7) holds. Therefore, we

complete the proof of Theorem 1.

Lemma 3. For all n > 3 and α ∈ (0, 1), pn,α ≥ rn,α.
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Figure 4. Geometry of Rb(α|r)
⋂
Rd(α|r) and Rc(α|r) in p-q plane for competitive

mediation: (A) when âb̂ĉ ≥ 0, (B) when âb̂ĉ < 0.

3.4. Impact on analysis of complementary mediation

The above results suggest that total-effect test is superfluous for establishing

complementary mediation under the LSE-F framework. To establish complemen-

tary mediation, only the following are needed:

1. obtain â, b̂, d̂ via LSE;

2. establish âb̂d̂ > 0;

3. establish â, b̂ and d̂ each is statistically significant via the standard F -test

for regression coefficients;

Complementary mediation is established if all of the above three are satisfied.

3.5. Extension to mediation of other types

Similar geometric analyses can be adopted to study other types of mediation.

It has been generally accepted that total-effect test is unnecessary for establish-

ing competitive mediation, because the mediated effect and the direct effect may

offset each other to produce a non-significant total effect. To support the argu-

ment via geometric analysis, we only need to show that Rb(α|r)
⋂
Rd(α|r) and

Rc(α|r) do not bother each other in general.

Figure 4 demonstrates the geometry of Rb(α|r)
⋂
Rd(α|r) and Rc(α|r) when

âb̂d̂ < 0. Because the value of âb̂ĉ can be positive or negative in this case (con-

dition âb̂d̂ < 0 does not necessarily lead to a positive or negative âb̂ĉ as in the

complementary mediation), the geometry of Rd(α) has two alternative forms

depending on the sign of âb̂ĉ based on Lemma 2 and needs to be discussed sepa-
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Figure 5. Geometry of Rb(α|r)
⋂
Rc

d(α|r) and Rc(α|r) in p-q plane for indirect-only

mediation: (A) when âb̂ĉ ≥ 0, (B) when âb̂ĉ < 0.

rately. Figure 4 (A) and (B) correspond to each of the two scenarios, respectively.

From these figures, we can see that Ra(α)∩Rb(α)∩Rd(α) and Rc(α) can either

completely separate from each other (when âb̂ĉ > 0) or share a common sub-

region (when âb̂ĉ < 0), confirming that the total effect test is indeed irrelevant

to establishing a competitive mediation.

Similarly, we expect an unconstrained relationship between Ra(α)∩Rb(α)∩
Rcd(α) and Rc(α) for indirect-only mediation, as it has been suspected that

total-effect may not be significant here. Figure 5 demonstrates the geometry

of Rb(α|r)
⋂
Rcd(α|r) and Rc(α|r) with no further constraints on LSEs. The fig-

ures show that there exist cases where Rb(α|r)
⋂
Rcd(α|r) and Rc(α|r) intersect

but do not contain each other, as in Figure 5 (A), or completely separate from

each other, as in Figure 5 (B), confirming an unconstrained relationship between

Ra(α)∩Rb(α)∩Rcd(α) and Rc(α) in general. These results suggest that the ge-

ometric analysis proposed in this paper could serve as a general tool for studying

mediation of various types.

4. Simulation Studies

4.1. Numerical validation of Theorem 1

The theoretical result above the total-effect test under the LSE-F framework,

as stated in Theorem 1, can be validated numerically by simulation. For this

purpose, we generated simulated data from the mediation model (1.1) and (1.2)

as follows:
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Figure 6. Numerical validation of Theorem 1: black circles represent datasets with
âb̂d̂ > 0, and grey crossings represent datasets with âb̂d̂ ≤ 0.

n ∼ Unif({4, . . . , 100}), (iM , iY , a, b, d) ∼ Unif[−1, 1]5,

X ∼ N(0, 1), σ2M and σ2Y ∼ Inv-Gamma(1, 1).

A total of 1,000 independent datasets of different sample sizes were simulated for

numerical validation.

For each simulated dataset, we calculated the LSEs (â, b̂, d̂, ĉ) and p-values

(pa, pb, pd, pc) under the LSE-F framework. If our theory holds, we would expect

to see pc ≤ max{pa, pb, pd} and d̂ĉ > 0 for all runs in which âb̂d̂ > 0. Figure 6

checks the above expectations in a graphical manner. Figure 6 (A) checks the

p-value condition by demonstrating each simulated dataset with one point in

a 2-dimensional space with the X-axis representing max{pa, pb, pd}, the Y -axis

standing for pc, and the shape highlighting the type of points: black circles for

datasets satisfying âb̂d̂ > 0, and grey crossings for all the other datasets; Figure 6

(B) checks the estimator sign condition in a similar way with the X-axis and

Y -axis representing d̂ and ĉ, respectively. We can see from these figures that,

although the grey crossing points spread all over the figures, all black circle

points are located under the diagonal line in Figure 6 (A), and within the up-

right and down-left quadrants in Figure 6 (B). These results are consistent with

our expectation, and thus support our theory.

4.2. Exploratory analysis for other frameworks

To explore whether a similar result holds for other frameworks for establishing

complementary mediation, we also implemented a similar numerical analysis for
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Figure 7. Numerical exploration for LSE-Sobel framework: black circles represent
datasets with âb̂d̂ > 0, and grey crossings represent datasets with âb̂d̂ ≤ 0.

LSE-Sobel framework and LAD-Z framework with the same group of simulated

datasets. For the LSE-Sobel framework, we calculated the LSEs (â, b̂, d̂, ĉ) for

each simulated dataset, and p-values of the corresponding tests, including pab,

the p-value of the Sobel test for a × b, pd, the p-value of the F -test for d, and

pc, the p-value of the F -test for c. If a similar result holds for the LSE-Sobel

framework, we would expect to see that pc ≤ max{pab, pd} and d̂ĉ > 0 for all

runs in which âb̂d̂ > 0.

Very similar to Figure 6, Figure 7 provides a graphical demonstration of

the results under the LSE-Sobel framework. Clearly, all black circle points are

located under the diagonal line in Figure 7 (A), suggesting that LSE-Sobel frame-

work may share a similar property as LSE-F framework, i.e., pc ≤ max{pab, pd}.
Furthermore, considering that Figure 7 (B) is exactly the same as Figure 6 (B),

as LSE-Sobel framework and LSE-F framework are identical in parameter es-

timation, we tend to believe that the total-effect test is superfluous under the

LSE-Sobel framework as well. In fact, the theoretical result below provides us

confidence about this conjecture when sample size n is large enough.

Theorem 2. Let pab be the p-value of the Sobel test, and let pa and pb be p-values

of F -tests for a and b, respectively. Then, for all ε > 0, there exists N > 0 such

that as long as the sample size n > N , we have pab ≥ max{pa, pb} − ε.

Theorem 2 leads to the following corollary immediately.

Corollary 2. If âb̂d̂ > 0, then

sign(ĉ) = sign(d̂) and lim
n→∞

P
(
pc ≤ max{pab, pd}

)
= 1.
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Figure 8. Numerical exploration for LAD-Z framework: black circles represent datasets
with ǎb̌ď > 0, and grey crossings represent datasets with ǎb̌ď ≤ 0.

For LAD-Z framework, however, the similar property does not hold. Let

(ǎ, b̌, ď, č) be the LADs of model parameters (a, b, d, c), and let (p∗a, p
∗
b , p
∗
d, p
∗
c)

be the p-values of the corresponding Z-tests. Figure 8 shows the scatter plots

of (max{p∗a, p∗b , p∗d}, p∗c) and (ď, č) based on the 1,000 simulation datasets in a

similar fashion as Figure 6 and Figure 7. We also replaced the Gaussian errors in

(1.1, 1.2) by Laplace errors and the figures have the same pattern. Unfortunately,

we find that some black circles (less than 10%), which represent the datasets with

ǎb̌ď > 0, spread over the diagonal line, suggesting that there is no easy answer to

the role of total-effect test under the LAD-Z framework.

5. Real Data Applications

To illustrate our main thesis with real data, we reanalyzed responses to a

1987 opinion survey, which asked 870 randomly selected Beijing residents about

their attitudes toward the economic reform under debate (Zhao et al. (1994)).

The dataset is of historical significance. The survey is one of the first in China

mainland based on probability sampling. It provides a rare view of the public

opinion at the very beginning of the reform, which in the following decades trans-

formed one of the poorest economies into the second largest in the world (Zhao

et al. (1994); Zhao and Shen (1995); Chen et al. (2008)). Hereinafter, we refer to

this dataset as the Opinion-1987 Data.

Our reanalysis focuses on how the media affected Beijingers’ understanding of

the reasons for the reform, and how the understanding in turn affected Beijingers’

support for the reform, i.e., Use-Media→ Understand-Reason→ Support-Reform.
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Table 2. Descriptive statistics of variables in the Opinion-1987 Data: the sample size N ,
the original scale as data were collected and the 0-1 percentage scale after the variables
have been linearly transformed to the interval [0, 1].

N
Original Scale 0-1 Percentage Scale

Min Max Mean Sd Min Max Mean Sd

Y Support Reform 847 1 5 4.28 0.79 0 1 0.821 0.196

M Understand Reason 846 1 5 3.84 0.88 0 1 0.709 0.220

X

Read Paper (days/10 days) 838 0 10 5.43 3.59 0 1 0.543 0.359

Listen to Radio (days/10 days) 842 0 10 5.45 3.64 0 1 0.545 0.364

Watch TV (days/10 days) 844 0 10 6.25 3.40 0 1 0.625 0.340

Use Media (days/10 days) 844 0 10 5.71 2.69 0 1 0.571 0.269

The data and the variables were described in detail by Zhao et al. (1994). Below

we highlight some information for this reanalysis.

5.1. Variables in the data

Dependent variable: support for reform (Support-Reform). This is a weighted

average of the responses to three questions measuring respondents’ attitude to-

ward the government’s economic policy, originally on 5-point Likert scales. For

this reanalysis, the composite variable was linearly transformed to a 0-1 percent-

age scale where 1 represents the strongest support and 0 represents the strongest

opposition (Zhao et al. (1994); Zhao and Zhang (2014)).

Mediating variable: understanding reasons (Understand-Reason). This is a

weighted average of the responses to seven questions measuring respondents’ ac-

ceptance of the reasons in support of the reform, originally also on 5-point Likert

scales. Again, the composite variable was linearly transformed to a 0-1 percentage

scale where 1 represents the strongest acceptance and 0 represents the strongest

rejection (Zhao et al. (1994); Zhao and Zhang (2014)).

Independent variables: media exposure (Read-Paper, Listen-to-Radio, Watch-

TV and Use-Media). Three variables measured how often the respondents read

newspaper, listened to radio or watched television. A fourth variable, Use-Media,

was created by taking the average of the three. Each of the four was transformed

to a 0-1 percentage scale where 1 represents exposure every day, and 0 represents

no exposure at all.

Univariate descriptions of all variables are in Table 2. The original Opinion-

1987 Data also contains seven control variables, including Age and Education.

We omitted the control variables to simplify the analysis.
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Table 3. Mediation analysis results of the Opinion-1987 Data. Columns 2-6: the inde-
pendent variable name; LSEs of the parameters; whether the condition âb̂d̂ > 0 holds;
p-values of testing each parameter and mediation types of each model. The mediation
type is determined by fixing significance level α = 0.05. Note that, as all variables are on
0-1 percentage scales, all regression coefficients, namely â, b̂, d̂, and ĉ, become percentage
coefficients (bp) (Zhao and Zhang (2014)).

Model X
Estimates

I(âb̂d̂ > 0)
p-values

Mediation Type
â b̂ d̂ ĉ pa pb pd pc

M1 Read Paper 0.229 0.239 0.048 0.102 Yes <2e-16 1.53e-13 1.46e-2 6.54e-8 Complementary

M2 Listen to Radio 0.155 0.242 0.059 0.096 Yes 4.65e-14 3.40e-15 1.23e-3 1.99e-7 Complementary

M3 Watch TV 0.025 0.265 0.034 0.041 Yes 0.271 <2e-16 7.44e-2 4.19e-2 Non-mediation

M4 Use Media 0.242 0.238 0.080 0.137 Yes <2e-16 1.88e-14 1.37e-3 3.94e-8 Complementary

5.2. Mediation analysis under various models

By alternating the four independent variables while retaining the same de-

pendent and mediating variables, we constructed four models of potential media-

tion. Table 3 summarizes the four models and results of corresponding mediation

analysis. From the table, we can see that complementary mediation shows up

in three of the four models, i.e., models M1,M2 and M4 , while no mediation

effect is found in model M3, probably due to the relatively low television pen-

etration in China at the time. Theorem 1 holds for all these real datasets, and

the total-effect test is indeed superfluous, as predicted by Theorem 1.

6. Conclusion and Discussion

This article provides an explicit proof that the total effect always bears the

same sign as the direct effect and is statistically significant whenever the mediated

effect and the direct effect point to the same direction and are both significant, as

long as LSE and F -tests are used to establish mediation, therefore is superfluous

and unnecessary for establishing mediation of this type in the classic mediation

model. We also show by numerical study and theoretical analysis that the similar

result also holds for the LSE-Sobel framework when sample size is large enough.

Considering that total-effect test can erroneously reject competitive mediation

and indirect-only mediation, our finding supports the growing agreement that

the total-effect test is unnecessary for establishing any type of mediation.

The discussions in this study are limited to the classic mediation model,

where X and M influence Y and each other linearly. For the more general

cases where X and M influence Y in a non-linear way with interactions, it be-

comes conceptually tricky and technically more challenging to define, estimate,

and test for mediation effects. See Robins and Greenland (1992), Pearl (2001),
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Frangakis and Rubin (2002), Lindquist (2012) for different extensions of the clas-

sic direct or indirect effect in a general setting, and Pearl (2012), Daniels et al.

(2012) for estimation methods. More efforts are needed to study the role of

total-effect test in the more general settings.

Supplementary Material

Supplementary materials available online include the details for constructing

the transformed data matrix D̃ and a detailed proof for Lemma 2.
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Appendix

A. Proof of Lemma 1

Apparently,

β̃ = (X̃′X̃)−1X̃′Ỹ = [(γΓX)′(γΓX)]−1(γΓX)′(γΓY) = (X′X)−1X′Y = β̂;

and, Rj(α) = R̃j(α) for all j ∈ {0, . . . , p} and α ∈ (0, 1) as the F -statistics is

invariant under the transformation, i.e.,

F̃j =
||ỸX̃ − ỸX̃[−j]||/1

||Ỹ − ỸX̃||/(n− p− 1)
=

||YX −YX[−j]||/1
||Y −YX||/(n− p− 1)

= Fj , j ∈ {0, . . . , p}.

B. Proof of Lemma 2

Based on the transformed data matrix D̃, it should be easy to see that

M̃1̃ = (m1, 0, . . . , 0), M̃1̃,X̃ = (m1,m2, 0, . . . , 0),

Ỹ1̃ = (y1, 0, . . . , 0), Ỹ1̃,X̃ = (y1, y2, 0, . . . , 0), Ỹ1̃,M̃,X̃ = (y1, y2, y3, 0, . . . , 0),

Ỹ1̃,M̃ =

(
y1,

m2y2 +m3y3
m2

2 +m2
3

×m2,
m2y2 +m3y3
m2

2 +m2
3

×m3, 0, . . . , 0

)
.
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Applying (3.3) and (3.4) to the transformed data, we can get the results. The

detailed calculation can be found in Supplementary Material.

C. Proof of Corollary 1

Lemma 2 implies that:

âb̂d̂ =
m2y3(m3y2 −m2y3)

x22m
2
3

,

âb̂ĉ =
m2y2y3
x22m3

.

Considering that x2 > 0 and m3 > 0, we have:

âb̂d̂ > 0⇐⇒ m2m3y2y3 > m2
2y

2
3

=⇒

{
m2y2y3 > 0 ⇐⇒ âb̂ĉ > 0;

|m3y2| > |m2y3| ⇐⇒ q > rp.

Note that the condition âb̂ĉ > 0 implies Rd(α) = {|q − rp| > pn,α(r2 + 1)1/2}.
Furthermore, q > rp implies R−d (α) = ∅ and thus Rd(α) = R+

d (α) = {q >

rp+ pn,α(r2 + 1)1/2}.

D. Proof of Lemma 3

Let Wn follows F -distribution with the degree of freedom (1,n) and Z0, Z1,

. . . , Zm be a series of independent standard normal random variables, based on

the definition of λ1,n−2(α) and λ1,n−3(α), we have: for all λ > 0,

P

(
Wn−2
n− 2

≤ λ1,n−2(α)

n− 2

)
= 1− α = P

(
Wn−3
n− 3

≤ λ1,n−3(α)

n− 3

)
,

P

(
Wn−3
n− 3

≤ λ
)

= P

(
Z2
0∑n−3

i=1 Z
2
i

≤ λ

)

≤ P

(
Z2
0∑n−2

i=1 Z
2
i

≤ λ

)
= P

(
Wn−2
n− 2

≤ λ
)
.

As a consequence, we have

P

(
Wn−2
n− 2

≤ λ1,n−2(α)

n− 2

)
= P

(
Wn−3
n− 3

≤ λ1,n−3(α)

n− 3

)
≤ P

(
Wn−2
n− 2

≤ λ1,n−3(α)

n− 3

)
,
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and thus rn,α =

(
λ1,n−2(α)

n− 2

)1/2

≤
(
λ1,n−3(α)

n− 3

)1/2

= pn,α.

E. Proof of Theorem 2

Let Ta = â2/Var(â) and Tb = b̂2/Var(b̂) be the test statistics of F -tests for

a and b, respectively. Then the Sobel test statistic is S2 = 1/(1/Ta + 1/Tb). Let

χ2
1 be a random variable of Chi-squared distribution with degree of freedom 1

and F1,n be that of F -distribution with degree of freedom (1, n). By definition,

the p-value of Sobel test is pab = Pr(χ2
1 > S2) and those of F -tests are pa =

Pr(F1,n > Ta) and pb = Pr(F1,n > Tb).

To build the relationship between pab and {pa, pb}, we define p̃a = Pr(χ2
1 >

Ta) and p̃b = Pr(χ2
1 > Tb). Since S2 ≤ min{Ta, Tb}, we have:

pab = Pr(χ2
1 > S2) ≥ Pr(χ2

1 > min{Ta, Tb}) = max{p̃a, p̃b}.

Furthermore, F1,n converges to χ2
1 in distribution, implying that as n → ∞, we

have uniformly convergence for all Ti that

pi = Pr(F1,n > Ti)→ Pr(χ2
1 > Ti) = p̃i, for i = a, b,

Therefore, for all ε > 0, there exists N > 0 such that for all n > N ,

pab ≥ max{p̃a, p̃b} ≥ max{pa, pb} − ε.

F. Proof of Corollary 2

Theorem 2 shows: for all ε > 0, there exists N > 0 such that for all n > N ,

we have

max{pa, pb, pd} ≤ max{pab + ε, pd} ≤ max{pab, pd}+ ε.

Given sign(ĉ) = sign(d̂) and pc ≤ max{pa, pb, pd} based on Theorem 1, it is clear

that the corollary holds.
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